Water Jet machines are extensively used in East Asia. They are characterized in particular by high insertion performance and low energy consumption. These machines are produced only by few companies and are used for the manufacture of light and medium weight fabrics with standard characteristics and in water repellent fibre materials, primarily multi-filament synthetic yarns. They are characterized in particular by high insertion performance and low energy consumption.


In this page

  1. Water jet weaving machines
  2. Operation principle

Water jet weaving machines

These machines are produced only by few companies and are used for the manufacture of light and medium weight fabrics with standard characteristics and in water repellent fibre materials, primarily multi-filament synthetic yarns. Water jet machines are extensively used in East Asia, but have limited importance in other countries. They are characterized in particular by high insertion performance and low energy consumption.



Operation principle

Figure shows how the machine operates. The weft yarn, which is fed from cone 7, is drawn-off by a feeding and measuring device 2 and then passes through a tension regulator 3 and a weft clamp 4. When the insertion has to take place, the weft clamp loosens its hold and the thread inserted inside a nozzle 1 is struck by a jet of pressurized water and launched through the shed at high speed. After the insertion has taken place, while the weft is hold flat by the threads which are moved by the leno mechanisms 5, the thermal knives 14 enter into action on the launch side to cut the weft, and on the opposite side to trim the fabric. A yarn clamping device 13 holds the weft waste which is cut off by the right-handed thermal knife, while rotating gears arrange for its removal (centre selvedge).

The water is conveyed by a pump 8, provided with a filter, the piston of which is controlled by a cam 10 producing the phases of water suction from the container 9 and of water supply to nozzle 1.

The sequence of the launch phases is the following: the pump 8 enters into action and the initial water jet serves only to straighten the residual small piece of weft, from nozzle 1 to thermal knife 14. This action, which has a duration time varying from 5 to 30 rotation degrees of the main shaft, depends on the yarn count and is named guide angle. The yarn flight forms a so-called flight angle, leaving clamp 4 open to permit to the pressurized water jet to insert the weft thread into the shed. The clamp opening time varies according to reed width and to loom running speed. On yarn exit from the shed, there is an electrical feeler or an infrared sensor which checks the presence of the weft end and makes the machine to stop in case of absence of the weft.

A drying device removes the humidity absorbed by the fabric, sucking it through grooves produced in the front beam 6 of the machine. A maximum of two weft colours can be inserted (weft mixer).

water jet loom